“The development of T-cell responses in pigs vaccinated ag


“The development of T-cell responses in pigs vaccinated against Aujeszky’s disease in the presence of maternal-derived antibodies (MDA) was examined. The aim of study was to evaluate the influence of MDA on the postvaccinal T-cell responses and optimization vaccination protocols in MDA-positive pigs. Pigs born to immune sows were vaccinated at different ages against Aujeszky’s disease virus (ADV). For estimation of T-cell responses the lymphocyte proliferation and interferon (IFN)-γ and interleukin-4 production were evaluated. High values of stimulation index were noted in groups vaccinated at 8 or 12 weeks of age (in 60% and 100% animals, respectively). In weaners

vaccinated at 10 and 14 weeks of age, as well as in those vaccinated at 7 days and revaccinated at 8 or 12 weeks of age, CP-690550 mw click here 100% of animals positively responded in the lymphocyte proliferation

assay after booster. At 20 weeks of life, only animals vaccinated at 12 weeks of age, 7 days and 12 weeks of age, and 10 and 14 weeks of age showed antigen-specific proliferation. Similar results were observed with IFN-γ secretion after exposure to live ADV. We demonstrate that early vaccination with a live glycoprotein E-deleted ADV vaccine, in the face of high levels of MDA, could be effective, but the intensity and duration of the anamnestic response depends on the time of booster injection. Vaccination of neonates faces many challenges due to the immaturity of the neonatal immune system and interference by maternal-derived antibodies (MDA) present at vaccination (Fischer et al., 2003). Interference of MDA with vaccine antigen may reduce or even eliminate Depsipeptide datasheet the immune response against live as well as inactivated vaccines. Various degrees of interference of vaccine-induced immune responses

by MDA have been reported for live vaccines as well as for nonreplicating vaccines (i.e. inactivated or subunit vaccines) (Andries et al., 1978; Bouma et al., 1998; Siegrist et al., 1998a, b; Dagan et al., 2000; Klinkenberg et al., 2002; Endsley et al., 2003; Fiore et al., 2003; Loeffen et al., 2003; Premenko-Lanier et al., 2006). It seems that attenuated vaccines are more efficient in protecting animals with passive immunity than inactivated ones (Casal et al., 2004). Optimally, vaccination of animals should begin just after the time of disappearance of maternal antibodies, but this approach may be impracticable due to a high degree of variability between individuals (Monteil et al., 1997). The titer of specific antibodies is often not correlated with protection against the challenge, which is why the targets of successful immunization against most pathogens should include the induction of strong and persistent memory T-cell responses.

Comments are closed.