Methods Figure 1 provides a schematic representation of the manufacturing process and illustrates the composition of the film layer. Ammonium tungstate ((NH4)10H2(W2O7)6, 99.99% purity) and cesium carbonate (Cs2CO3, 99.9% purity trace metal basis) were used as precursors. These materials were each dissolved in distilled water and stirred for 1 h at room temperature, and two solutions Gemcitabine were well mixed in a ceramic crucible. This mixture was dried at 180°C for 8 h in a heating chamber (model
ON-O2GW, JEIO TECH, Seoul, South Korea). The prepared powder was heated at 550°C for 1 h under a flowing H2/N2 gas mixture (H2/N2 = 90/10 cc/min) and annealed at 800°C for 1 h under a N2 gas flow (N2 = 100 cc/min) in a vacuum furnace (model DVF-1600s, DAE HEUNG SCIENCE, Incheon, South Korea). Dark blue tungsten oxide powders were obtained and analyzed via X-ray diffraction (XRD) (model x18xhf22, JEOL, Akishima, Tokyo, Japan) at 1°/min between 0° and 90°. The powder was mixed with a dispersing agent (BYK2001) in ethanol, and a turbo-mill (model 8000D, SPEX, Metuchen, NJ, USA) with an iron ball (20 mm) and zirconia bead (0.3 mm, ZrO2 94.5%, Y2O3 5.1%) was used for top-down stepwise grinding for 4 h. Figure 1 Schematic fabrication of NIR absorption films containing Cs 0.33 WO 3 nanoparticles. The composite layer-coated film was prepared
using a mixture INCB28060 of dispersed sol and acrylic UV-curing binder. A rotating mixer (model MS 3basic, IKA, Nara, Japan) was used, and the polyethylene terephthalate (PET, film thickness = 186 μm) substrate was coated using
the bar SCH727965 clinical trial casting method. The coated film was dried at 80°C for 1 min in a heating chamber and illuminated using UV-curing equipment (model LZ-U1O1DCH, LICHTZEN, Gyeonggi-do, South Korea) at an intensity of 800 W/cm for 20 s. To produce the double layer-coated film, dispersed 4��8C Cs0.33WO3 sol was first coated on PET substrate, and the UV binder was coated using the bar casting method. The thickness was measured using the cross-sectional length of each film via scanning electron microscopy (SEM, JSM-6700 F, JEOL). The optical properties were examined using a UV/VIS/near-infrared (NIR) spectrophotometer (model Cary 5000, Varian Australia Pty. Ltd., Mulgrave, Australia) in the range of 300 ~ 3,300 nm. The nanodistance of the internanoparticles was measured by a transmission electron microscope (TEM, JEM-2100 F, JEOL Ltd.). Results and discussion The solar energy spectrum in all regions was based on ASTM G173-03 as indicated in Figure 2. The solar shielding characteristics were analyzed using the solar transmittance selectivity (STS) based on the transmittance deviation (T Vis (%), T NIR (%)) in the visible and near-infrared regions.