2a, b, c). 4 cases of squamous cell carcinoma also demonstrated podoplanin expression in cancer cell plasma (data not shown). Moreover, we cut serial sections of lung cancer tissue, and stained them with podoplanin, CD31 and VEGFR-3, respectively. The red arrow in Fig. 2d indicates podoplanin-negative blood vessels. Black arrow in Fig. 2d indicates podoplanin-positive lymph vessel. While in Fig. 2e and 2f, the same region was positively stained for CD31 and VEGFR-3, indicating
that VEGFR-3 was also a marker of blood vessels. Figure 2 Immunostaining for podoplanin in nsclc #Bindarit chemical structure randurls[1|1|,|CHEM1|]# tissues. Correlation analysis of podoplanin, LYVE-1, VEGFR-3 and CD31 In 82 paraffin-embedded NSCLC tissues, the mean number of podoplanin+ vessels was 21.5 ± 8.4 (range 7.4–43.6). The mean number of CD31 and VEGFR-3+ vessels was 51.4 ± 11.1 (range 30.0–77.2) and 30.2 ± 16.8 (range 0–46.6), respectively. No substantial association was found between the
number of podoplanin+ vessels and CD31+ or VEGFR-3+ vessels (the Spearman rank correlation coefficient r = -0.171, P = 0.124; r = 0.003, P = 0.979, respectively). In contrast, high counts of VEGFR-3+ vessels were strongly associated with high CD31+ vessel counts (r = 0.331, P = 0.002), which showed most VEGFR-3+ vessels were microvalscular vessels not lymphatic vessels. In addition, in 40 frozen NSCLC tissues, the mean number of LYVE-1+ vessels was 19.9 ± 9.0 (range 5.2–48.0). The mean number of CD31 and podoplanin+ Volasertib vessels was 52.3 ± 10.9 (range 34.4–71.2) and 22.1 ± 8.1 (range 6.6–44.6), respectively. No substantial association was found between the number of CD31+ vessels and LYVE-1 or podoplanin+ Dichloromethane dehalogenase vessels (r = 0.009, P = 0.957; r = 0.059, P = 0.717, respectively). In contrast, high counts of LYVE-1+ vessels were strongly associated with high podoplanin+ vessel counts (r = 0.525, P = 0.001). With the results of morphology above mentioned, LYVE-1+ vessels were most lymphatic vessels, but few of them were micro vessels. VEGF-C expression in NSCLC tissue and its relation to lymph node metastasis
Carcinoma VEGF-C expression was classified either as positive (n = 61, ≥10% of the carcinoma cells expressed VEGF-C) or negative (n = 21, absent expression or expression in < 10% of the carcinoma cells). Among the 82 NSCLC tissues, 61 were VEGF-C positive, 21 were negative, indicating a positive expression rate of 74.4% (61/82). The positive expression rate was significantly higher in the lymph node positive group (93.2%, 41/44) than in the lymph node negative group (52.6%, 20/38) (P = 0.000) (Fig. 3a). ptLVD of patients was significantly higher in the VEGF-C positive group than in the VEGF-C negative group (23.1 ± 8.5 vs 15.6 ± 4.2, P = 0.000). However, intratumoral lymphatic vessel density (itLVD) values of the two groups showed no significant difference (10.7 ± 5.3 vs 10.4 ± 4.7, P = 0.820) (Fig. 3b).