Gas sensing properties The dynamic changes in resistance of sensors with different mixing ratios of P3HT:1.00 mol% Au/ZnO NPs (1:0, 1:1, 2:1, 3:1, 4:1, 1:2, and 0:1) are shown in Figure 7. It is seen that all sensors exhibit an increase of resistance during NH3 exposure, indicating a p-type-like gas sensing behavior. In addition, it is observed that the baseline resistance monotonically increases with increasing content of 1.00 mol% Au/ZnO NPs in accordance with the typical combination of materials’ resistances. Furthermore, P3HT exhibits a moderate NH3 response, while 1.00 mol%
MRT67307 Au/ZnO NPs give very low response to NH3 at room temperature. Moreover, the addition of 1.00 mol% Au/ZnO NPs into P3HT at a mixing ratio up to 1:1 leads to significant enhancement in the NH3 response compared with the P3HT sensor. However, the response rapidly degrades when the amount of 1.00 mol% Au/ZnO NPs exceeds that of P3HT (1:2). From calculated changes of resistance, it is found that the sensor with 4:1 of P3HT:1.00 mol% Au/ZnO NPs exhibits the highest value, indicating that it is the optimal P3HT:1.00 mol% Au/ZnO NPs composite sensor. Since the optimal mixing ratio of the Au/ZnO NPs and P3HT of 1:4 is at the lowest border of the investigated
range, it is possible that the actual optimal concentration will be at a lower concentration value and further detailed investigation should be conducted to refine the result. The obtained optimal performances of P3HT:Au/ZnO sensors see more are superior to other reports presented Amino acid in Table 1 with a relatively high response magnitude of 32 and wide concentration range of 1,000 ppm. However, the response at lower concentration may be lower than some work such as ZnO/PANI hybrid [23] and PANI/TiO2 nanocomposite thin films [21]. Figure 7 Change in resistance. The resistance of sensors with AZD6738 difference ratio of P3HT:1.00 mol% Au/ZnO NPs (1:0, 1:1, 2:1, 3:1, 4:1, 1:2, and 0:1) toward 25 to 1,000 ppm NH3 at room temperature. The sensor characteristics
are then analyzed in terms of sensor response and response time. The sensor response (S) is determined from the electrical resistance change of P3HT:1.00 mol% Au/ZnO NPs sensors upon exposure to target gas using the following relation: S = R gas/R air, where R gas and R air are the stable electrical resistance of a sensor upon exposure to NH3 and the initial resistance in air, respectively. The response time is defined as the time needed for a sensor to attain 90% of maximum change in resistance upon exposure to a test gas. The calculated sensor response and response time of optimal sensors with 4:1 of P3HT:1.00 mol% Au/ZnO NPs are shown in Figure 8. Apparently, the sensor response to NH3 gas monotonically increases upon exposure with increasing NH3 concentration from 25 to 1,000 ppm. At 1,000 ppm, the composite sensor prepared with the 4:1 ratio exhibits the highest NH3 response of 32 and a short response time of 4.2 s.