The final product of IMP metabolism is urate

There were

The final product of IMP metabolism is urate.

There were no changes in the blood urate concentration between the groups either before or after the match (Figure 3C). None of the above metabolites showed changes in response to Arg supplementation when we compared the pre- and post-match levels (Figure 3). Figure 3 Glucose increases in response to exercise in a supplementation-independent manner (A). Neither supplementation nor exercise affects urea (B) or urate (C) after intense exercise. Control, n = 23 (PG, ●); Arginine, n = 16 (RG, Δ). (*) denotes that the average ± SE is different from the pre-exercise values. Blood cells The six minutes Cilengitide research buy of exercise induced an increase in leukocytes of approximately 75% in both groups. This elevated level did not decrease in the ten minutes EX 527 manufacturer following the experiment and was similar between the groups (Figure 4A). To avoid misinterpretations due to volemic variations, we also evaluated the red blood cell counts. The packed cell volume was not altered by exercise (Figure 4B). We did not detect any differences in the red blood cell count, volume or hemoglobin content in response to either exercise

or supplementation. Figure NF-��B inhibitor 4 White blood cell counts increase (A) after intense exercise without changes in packed cell volume (B). Control, n = 23 (PG, ●); Arginine, n = 16 (RG, Δ). (*) denotes that the average ± SE is different from the pre-exercise values. The absolute pre-exercise WBC counts are 5.9 ± 0.2 cells × 109/L for the PG and 6.4 ± 0.5 cells × 109/L for the RG; the packed cell volumes are 47.5 ± 0.6% for the PG and 46.6 ± 0.6% for the RG. Differential white blood cell analyses showed a distinct response to both exercise and Arg supplementation. The basophil counts rose two-fold in the PG but did not change in the RG (Figure 5A). The eosinophil counts were significantly

different between the groups after the end of exercise (Figure 5B). However, neutrophils appeared not to respond significantly in either the PG or RG (Figure 5C). The exercise led to a 2.2-fold increase in the lymphocyte count. This increase was significantly reduced by Arg supplementation (Figure 6A). almost Figure 5 Granulocyte counts in response to exercise and supplementation. Basophils (A); eosinophils (B); neutrophils (C). Control, n = 23 (PG, ●); Arginine, n = 16 (RG, Δ). (*) denotes that the average ± SE is different from the pre-exercise values; (#) denotes a difference between the experimental groups. The absolute pre-exercise values for basophils are 2.6 ± 0.4 × 107 cells /L for the PG and 1.9 ± 0.9 × 107 cells /L for the RG; for eosinophils, 1.8 ± 0.3 × 108 cells /L for the PG and 2.0 ± 0.5 × 108 cells /L for the RG; and for neutrophils, 3.1 ± 0.2 × 109 cells /L for the PG and 2.7 ± 0.4 × 109 cells /L for the RG. Figure 6 Exercise induces an increase in lymphocytes in an arginine supplementation-dependent manner. Control, n = 23 (PG, ●); Arginine, n = 16 (RG, Δ).

Comments are closed.